Fast skeletal muscle regulatory light chain is required for fast and slow skeletal muscle development.
نویسندگان
چکیده
In skeletal muscle, the myosin molecule contains two sets of noncovalently attached low molecular weight proteins, the regulatory (RLC) and essential (ELC) light chains. To assess the functional and developmental significance of the fast skeletal isoform of the RLC (RLC-f), the murine fast skeletal RLC gene (Mylpf) was disrupted by homologous recombination. Heterozygotes containing an intronic neo cassette (RLC-/+) had approximately one-half of the amount of the RLC-f mRNA compared to wild-type (WT) mice but their muscles were histologically normal in both adults and neonates. In contrast, homozygous mice (RLC-/-) had no RLC-f mRNA or protein and completely lacked both fast and slow skeletal muscle. This was likely due to interference with mRNA processing in the presence of the neo cassette. These RLC-f null mice died immediately after birth, presumably due to respiratory failure since their diaphragms lacked skeletal muscle. The body weight of newborn RLC-f null mice was decreased 30% compared to heterozygous or WT newborn mice. The lack of skeletal muscle formation in the null mice did not affect the development of other organs including the heart. In addition, we found that WT mice did not express the ventricular/slow skeletal RLC isoform (RLC-v/s) until after birth, while it was expressed normally in the embryonic heart. The lack of skeletal muscle formation observed in RLC-f null mice indicates the total dependence of skeletal muscle development on the presence of RLC-f during embryogenesis. This observation, along with the normal function of the RLC-v/s in the heart, implicates a coupled, diverse pathway for RLC-v/s and RLC-f during embryogenesis, where RLC-v/s is responsible for heart development and RLC-f is necessary for skeletal muscle formation. In conclusion, in this study we demonstrate that the Mylpf gene is critically important for fast and slow skeletal muscle development.
منابع مشابه
Effect of progressive resistance exercise on β1 integrin and vinculin protein levels in slow-and fast-twitch skeletal muscles of male rats
Introduction: Skeletal muscle is a flexible and ever changing tissue and the role of costameric proteins in its response to different stimuli is not well defined. The aim of this study was to investigate the effect of progressive resistance exercise on β1 integrin and vinculin proteins in fast and slow twitch skeletal muscles of male rats. Methods: Twelve male Wistar rats (weight: 298±5.2 gr...
متن کاملThe Effect of High and Low-Intensity Interval Training on TRF1 and TRF2 Gene Expression in Slow and Fast-Twitch Skeletal Muscles of C57BL/6 Mice: An Experimental Study
Background and Objectives: The process of chronic diseases and aging is associated with reduced telomere length. The aim of this study was to investigate the effect of high-intensity interval training (HIIT) and low-intensity interval training (LIIT) on telomere repeat binding factor 1 and 2 (TRF1 and TRF2) in Soleus (SOL) muscle as a slow-twitch (ST) and Extensor Digitorum Longus (EDL) muscle ...
متن کاملThe Effect of Intensive Endurance Activity on Myocyte Enhancer Factor 2C Gene Expression of Slow and Fast Twitch Muscles in Male Wistar Rats: An Experimental Study
Background and Objectives: Myocyte enhancer factor 2c activates the genes of the slow-twitch muscle, the muscle which plays role in endurance activity. Therefore, the aim of this study was to evaluate the effect of a program of intensive endurance activity on MEF2c gene expression in fast and slow twitch skeletal muscles in wistar rats. Materials and Methods: In this experimental study, 14 mal...
متن کاملEffect of eight weeks of resistance training on the expression of klotho protein and insulin-like growth factor 1 genes in slow twitch and fast twitch skeletal muscles of aged Wistar rats
Background and Aims: Klotho protein is a substance effective in increasing life expectancy. Moreover, it prevents muscle atrophy, osteoporosis, and cardiovascular disease. Therefore, the present aimed to assess changes in the expression of klotho protein and insulin-like growth factor 1 (IGF-1) genes in the muscles of aged Wistar rats after eight weeks of resistance training. Materials and Met...
متن کاملLoss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy.
Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 21 9 شماره
صفحات -
تاریخ انتشار 2007